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ABSTRACT

This paper presents a new procedure for predicting the lateral drifting
force and moment on an ocean platform floating in oblique waves, The
disturbance of an incident wave caused by the presence of the floating
body is represented by the sum of the diffracted and forced wave
potentials, which are determined by satisfying the kinematical boundary
conditions on the body surface. The scattered waves are determined from the
asymptotic expression of the two potentials. Frank's close~fit methad.
Grim's strip method and Maruo’s formula for two-dimensional drifting force
are used, MNumerical results were compared with experimental results and

found to be in good agreement.
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NOMENCLATURE
E complex wave amplitude ratio
A coefficlient of wave amplitude ratio
a amplitude .of the incident wave
c constant
c section contour
D constant
G center of gravity or Green's function (source potentiat)
h wave elevation

| integral or influence coefficient

J influence coefficient

K lateral force or coefficient

L ship length or coefficient

M moment

m number of mode

o origin of the coordinate system
Q source intensity

S segment

s chord length

T draft or period

t time

v velocity of a point on the body surface

X,Y,Z space coordinates

X,Y¥,2 body coordinates
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Subscripts
D suffix designating diffraction
F suffix designating forced (or radiation) potential
h suffix designating wave
| suffix designating incident wave

I /A1, or suffix designating the imaginary part, or ith point,
or ith segment

] suffix designating jth segment

n suffix designating the normal component
o suffix designating the origin o
r suffix deslgnating the real part

+ suffix designating xw

Superscripts
e suffix designating even function
(m) suffix designating the number of mode

0 suffix designating odd function

Greek Letters

o slope of a segment

5 damping coefficient

€ phase difference

s heave, or suffix designating heaving motion, or complex
coordinate

ul sway, or suffix designating swayling motion, or y-coordinate of
a source point

" radius of gyration

A wave length
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L

wave incidence

wave number

x=coordInate of a source point

water density

velocity potential

roll, or suffix designating rolling motion
yaw, or suffix designating yawing motion
pitch, or suffix designating pltching motlon

circular frequency

i
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INTRODUCT I ON

Since the prediction of the motions of an ocean platform in oblique

253:% it is reasonable to anticipate

seas can be made quite accuratelyl’
that the prediction of drifting force on the ocean platform floating in
waves will also be reasonably achieved. Maruo® studied analytically how

to determine the two~dimensional drifting force on a floating cylinder in

a beam sea and came to the conclusion that the drifting force is determined
by knowing the scattered wave caused by the presence of the floating body
in the incident wave and remarked that his formula for determining the

two-dimensionai force was the same as that of Haskind.®

Ogawa ' applied Maruo's formula to his strip calculation on a fixed
body, where the strip method was based on the concept of the snake-type
wave generator. He also made an experiment with a fixed ship model and
the measured drifting force was in good agreement with his calculation.
LalangasE reported experimental results on the lateral drifting force and
moment on a fixed model in oblique waves and on a free ship model in beam
seas. MNewman® studied theoretically how to estimate the drifting force
and moment. This is very rigorous but based on the assumption that the

ship is a slender body, which does not give realistic answers.

The present study is based on the two-dimensional source method™ in
connection with the strip method®»* and Maruo's formula® for determining

the two-dimensional drifting force on a cylinder flpating in beam seas.

The scattered waves are generated from the disturbance caused by the

presence of the oscillating cylinder in beam seas.

This scattered wave system Is represented by the sum of the diffracted
wave and forced wave (or radiation) potential, whose amplitudes are
determined by satisfying the kinematical boundary conditions. There are
then two components of the scattered wave potential: (1) describing the
diffraction of the incident wave from the fixed body and (2) describing the

radiation from the forced oscillation of the boedy in calm water with the



velocity ampllitudes which represent the motion of the body in the given
Incident wave. The motion of the body in a given incident wave |s pre-
dicted according to previously published procedures.}?’’3’¢ The scat -
tered waves, if determined, can then be used to calculate the drifting

force on a strip section by making use of Maruo's formula.

To begin with, the general outline of the method will be described,
then: (1) a detalled analysis of how to determine the specific potentlals
of the diffracted and forced wave will be given, (2) the derivation of
the scattered wave from the asymptotic expression for the potentials
will be discussed, {3) the scattared waves will be examined in the light
of prepublished workld and In connection with Haskind-Newman theory,12
(4) equations for the drifting force and moment will be formulated, and
(5} numerical examples of the models which were previously tested and
published will be discussed in order to confirm the reliability of the
procedure. The comparison of the prediction with the experimental data
show excellent agreements. This work can be extended easily to the

oscillating ship with forward speed using the techniques of reference k.

ISuperior numbers in text matter refer to similarly numbered references
listed at the end of this report.
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GENERAL OUTLINE OF THE METHOD

Suppose that a ship is oscillating steadily without forward speed
in an oblique incident wave and assume that the incident wave amplitude
and consequently the resulting motion of the ship are small. Furthermore,
the diffracted and forced waves are assumed to be small. Under these
conditions, the incident waves encountered by the ship are diffracted
from it just as they would be from the fixed ship, while at the same
time excliting the ship to undergo oscillations which in turn emit the
forced wave system. In view of these remarks we write the velocity

potential for the motion as the following sum:

@ - §|(XJY;ZJ':) + @D(x,Y;th) + @F(X,Y,Z,t) (1)
where 3y = incident wave potential
$p = diffracted wave potential
QF = forced wave potential (or radjation potential)

The total potential 3 should satlisfy the conditionss?

1. The continuity of the liquid in the whole domain.

2. The linearized free-surface condition.

3. The radiation condition.

k. The deep water condition.

5. The kinematical boundary condition on the body surface.

Suppose that we have the potential § which satisfles conditions
1 through 4, then condition 5 is written in the form

9%, %, %
3 ! D F o
s tE TR T v, (2)
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where Vn ts the prescribed normal velocity component of a point on the
body surface. This velocity Is directly obtained from the solution of the
equations of motion of the ship in the given incident wave.® |In the
Ilnearized theory this kinematical boundary condition Is satisfied by

two separate conditions

B@D a@!

an_ _ _ 3n (3)
B@F v (1)
on. - 'n

on the body surface at the mean position of the oscillation. The dif-
fracted wave potential gp in Eq. (3) is nothing but the potential for
estimating the wave-exciting force.? The forced potential 3 from Eq. (4)
is the potential induced by the forced oscillation with the given velocity

Vp In calm water. From the preceding discussion it is seen that
disturbances of the incident waves in the presence of the oscillating

body are obtained from the sum of the potentials i+ &ps and that the
scattered waves generated from the disturbances are determined from the

asymptotic expressions of Iy *+ op at infinity.

Now we consider a section of the ship oscillating in the strip
domain (see section 1) where an oblique Incident wave is oncoming
as if in a beam sea. Suppose we had determined the disturbance potential
3p + &g In this domain, then we can estimate the scattered wave in the
strip domain and consequently the lateral drifting force on this section
of the body according to Maruo.® Then, the summation of the strip forces
and moments of the strip force with respect to the longitudinal center
of gravity of the ship provide us with the resultant drifting farce

and moment.



I. Incident Wave Potential in a Strip Domain

Let o-XYZ and o-xyz be the right-handed rectangular space-~ and
body-coordinate systems as illustrated in Figure 1. Coordinate planes
0-XZ and o-xz lie on the calm water surface, and the Y- and y-axes point

vertically upward.

Let the incident angle of the wave be designated by . as shown and

let the wave progress in the positive X-direction. Then the wave profile

is
hI = a cos(v x sing + vz cospy = wt) (5)
where
a = wave amplitude
= wave number (w?/g)
w = circutar frequency of the wave

Now, suppose two vertical control planes cut the body at z and z+dz,

and observe the wave motion within the fictiously confined domain which

is infinitely extended in the lower half domain, i.e., in +x and -y direc-
tions. This domain is designated the ''strip domain.'" The wave equation,
Eq. (5), can be interpreted in this domain by noting that the term vxsiny,
determines the wave form in the strip domain and that the term vzcosy
represents the phase shift of the incident wave at x=0 and 2z=z relative
to a crest at the origin. Thus the potential of the incident wave, Eq.(5),

is defined in the strip domain in the form

2, = %% e”? sin(w sinuy + vz cosp - wt) (6)

This potential consists of even and odd functions with respect to x and

they are expressed in the forms:

@? = %f—evy sin{vx « siny) * cos{vz cosu = wt)

} 7)

The odd function is applied to represent the asymmetric flow about the

@T = %ﬂ ey cos{vx . siny) » sin{vz cosy - wt)
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y-axis, while the even function is applied to the symmetric flow. This
functional resolution will be utilized In the kinematical boundary con-

ditions in the following section,

2. Diffracted Wave Potential in a Strip Domain

The incident wave described above will be diffracted from the body
section as if it were fixed in the strip domain as described in the pre-
ceding section., Since the diffraction is a disturbance, the diffracted
wave potential may be represented by the scurce potential used by Frank,1©
Referring to the form of the incident wave potential, Eq. (6), we may

write the diffraction potential in the strip domain in the form
i t
5 (x,y,250,t)= Re [J’ o™ (s) - 60xyie,mds o (VZCOSH ’] (8)
c

where ¢ designates the wetted contour of the strip section and m
designates the mode of excitation [m = 2,3,4 = sway, heave, roll],

Qém)(s) designates the unknown complex source intensities distributed

over the strip surface. These source intensities are determined by
satisfying the kinematical boundary condition on the body surface [Eq.(3)].
They depend on the mode of excitation, the geometry of the body and the
incident wave. The function G(x,y;€,n]*°+*® is the two-dimensional pul-
sating source potential of unit intensity at the point (g,7) In the lower

ivzcosp

half plane (see Figure 2a). The exponential term e represents the

influence of the location of the strip at z where the disturbance occurs in re-

sponse to the oblique incident wave of wave number v and incidence .
Since Qém) and G are the complex source Intensity and Green's
function, respectively, let them be

0" = o5 + iaf})

where i = L1 and where QéT) and QéT) are real and imaginary parts

(m)

of QD , and Gr and —Gi are real and imaginary parts of G.



Equation (8) is then changed to

_I (-0 (m)G + Q(m) G) ds * sin(vz cosy -wt) (9)

C

This potential @ém) is determined by satisfying the kinematical bound-
ary condition Eq. (3), which become

a@éz) a@T

an =< an

a¢é3) 3° '
an = - an (3 )
ol 50

an - an

on the fixed body surface. This boundary condition is specifically
written in the following forms by dropping the suffix D , i.e., for

sway (m=2),

N VY.
.53; Q§2) ff) %3| Qnij Jff) = -we [sinu* cos(ux; - sinu)sina,
.sin(uxi > sinu)cosa ]
(10)
N
(2) (2) (2) ,(2) _
JZ Q‘J I_j +_j%i QN+_i Ii_j 0
and, for heaye-exciting (m=3),
N
(3)  (3) 3) ,3) .
P -2_7, Wi Nyt T 0
(1)

VY .
Z] Q(3) f?) + ?‘ (33 gi) = we '[sinu . sin(vxi -sinp,)sinaI
i=1 j=1

+cos(vxi- sinu)cosa; ]
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Here o; is the angle made between ith segment and the poslitive x~axlis

and both I§T) and Jg?) formatly represent the normal derivatives

o I G _ds and Q—-I G, ds , and are called the '"Influence coefficients"
an e ' an c i

with specific definitions given in the Appendix of Reference 10; and
Q}m) = QEm) and QN+] = qu) at the jth segment. For Mode 4, the
formula is the same as for mode = 2, If N sources are distributed over
the strip surface, we obtain a (2N x 2N) simultaneous equatlion system
with 2N unknowns, i.e., the real and imaginary parts of the N sources.
Since the right~hand sides of Eq. (10) and (11) represent the ex-
ad

pression %- Sﬁl , the solution Qém) gives the source intensity per

unit amplitude of the incident wave and the insertion of this Qém) in
Eq. (9) then provides the diffraction potential per unit amplitude of the
L, (m)

incident wave S'QD .

3. Forced Wave Potentlal in the Strip Domain

From the solutions of the coupled heaving and pitching, and the
coupled swaying, rolling and yawing motlons of a ship In oblique seas,
according to the procedure given in Reference 3 we obtain the five mo~
tions sway 7, heave ¢, roll ¢, pitch 4§, and yaw y, which are ex-

pressed in the forms

n = Il cos (wt + enh)
€ = I1¢1 cos (wt + ech)
¢ = lot cos (wt + g¢h) (12)
§ = 1yl cos (wt + €¢h)
X = 1X) cos (wt + & p)

where ¢ desginates the phase difference between the wave maximum at the

origin © and the maximum of motion,

Now we confine our attention to the motion in a strip domain, The



motion consists of three degrees of freedom: sway, heave and roll in-

duced by all the motions of the ship. The velocities of each strip are

written as:

v@ - %‘E (zx + 1)
v = (g 4 ) (13)
O

The normal velocity components ng) at the mid-point of the ith segment
(xi,yi) of the strip body directed into the water are

Vﬁz) = V(Z) sin ay

U£3) = -V(3) oS o, (14}

Vﬁh) = —V(u) {xi cos a; +(yi-y0)sin ai}

where Yo chosen reoll axis

angle made between the jth segment With the positive x=-axis

as shown in Figure 2b

o5

Now, let us consider the forced wave potential @ém) caused by the
osciltlation of the strip body with the velocity as given In Eg.{13). This
potential may be represented by the source potential as was used in repre-

senting the diffraction potential [Eq.(8)], i.e.,

m . i (vzcosp=wt
Qé )(x,y,Z.u,t)= Re [quém)(s). G (x,y;€,n)ds e (vzcosp=w )] (8")
where Q(m) denote the unknown complex source intensities. These in=

F
tensities are determined by satisfying the kinematical boundary condition,

Eq. (&) ,which becomes

{m) (m)
o \
3 L (15)

an = a

1
a

on the oscillating body surface at the mean position of oscillation.

Equation (i15} is specifically written as follows:
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For Sway:

N
.El QJ(Z) l:'i(Jz-) cos (vzcosp) + Ji(? sin(uzcosu)jl'

N
+j§] Q'&} [Ji(i) cos (vzcosy) - i§§) sin(vzcos};)]

- vzix| I ]
-w[ e sin exh+ o slng,qh sin o

(16}
N
JEI Qj(z) ['i(JZ') sin(vzcosy) - Ji(j:!) cos (vZCOSp.)]
+ E Q(Z) [JI(JZ’) sin(vzcosy) + Ii(_j%) cos (\)ZCOSp,)]
By [J%%L cos eXh + —LE'— cos e,nh:l sin ap -
For Heave:
Z}] Q(B) l:l(”cos(uzcos,_,,) + J(3) sin(vzcosy) ]
JI=
+_|§l Qg} [J(B)cos(vzcosu) - li(?) sin(vzcosy) ]
=m[-vz—-\‘;~g-l—sin eq,h'+ -—Is;l—sin eCh] cos o, ,
(17)

.El Q(3) ["3) sin(vzcosy) - Ji(}) cos(vzcosu)}

&) o

sin(vzcosy) + 1 (3) cos (vzcosu)]

o [ vz LEL a4 )
m[vz ~ cos e¢h+ o= COS eChJ cos o

10
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For Roll:

"M==

b2 Q}h) [If?) cos (vzcosp) + Jf?) sin(vzcosQ)].

N
+ Z Q(L}) [J (il') oS (szOSu) |(J ) an (szOSu)]
j:

= [-Xégl— sin e¢h] [(yi-yo)sln ®; + X.cos ai] »

Q}u) [Ig?) sin{vzcosy) - Jg?) cos(vzcosu)]

_F%H Qéﬁi [ F.) sin(vzcos,) + Ig?) cos(uzcosu)]

ICE P (R 1
® [v Sa— ©OS €¢h (yi y0)5|n a; + X0 o,

Selving this system of 2N equations for the 2N unknowns, yields the re-

quired source intensities so that @F Is now determined, in terms of the
motion amplitudes,

L. The Asymptotic Expression of the Potentials

Since both expressions of the diffracted and forced wave potentials

4 e 340

P are identical, we derlve the asymptotic expression of

the potential g-a(m) without suffixes D and F . By introducing the

symbols + for x - +o , we write the potential,

26 (yazin,t) =R, irc o™ (s) 6, (x,ysgmds - o VZCOWU] g
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where Q(m)(s) is the complex source intensity per unit amplitude of

the incident wave,

According to Wehausen and Laiton,l3 the asymptotic expression
of the potential Gi is

6, eyign) = s 1 e VEN] Ly g o] 20)
where

z=x+iy 3 C=g+0n ; ¢ =(-iy with 1<0 .
Let

O = Gpy * (65D (20')
with _

G, = :tReI:i e'i”(z‘C)]

G, = Re[e'i"(z"f)]

and insert Eq, (20') in Eq. (19), then the integration is reduced ap-
proximately to,

1e{m - > o™ i ( t)
(21)

where Sj and S—j designates the jth and -jth segments, raspec~
tivelyl® (see Fig. 2b). The iIntegrals in the above equation are put in
the form

I:t = Iri 4+ 1 Iii (22)
with
- m
Veg = JS G, ds ~ (-1) IS Gy, ds
J ") } (23)
I _ m
i1 == s 6i ds + (~1) j G, ds
J S-j
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and the integrals I:t are given in the Appendix, Thus, the potential

Eq. (21), is transformed to

(m) = ReEZ) Q(m)+ iQéTi] (o, + 11 ii)e'i(-"zcoswmt)] (21)
with Q}m) = Qim) : QNm) = Q on the jth segment.

Inserting the integral I, in Eq. (A-6) in Eq. (24) and rearrang-

ing the expressions, we obtain the asymptotic expression in the form,

) 0 g0 oy g 08 ¥ 2005 =

(25)

[vx+wt - vzcosy - eEm)]

where b {m)
- (]
Cy
p (m)
O - o [

N P O SN P N O

N

¢m - 2t Q}'“) 0+ (- K, +Q("') G R
J=
N

o = 2t 0 - 0" Gl 0 (0" |

The outgoing waves at x - + o are readily derived from the potential

1 _(m) .,
ry @i in the form,

(m) (m)
o
a ga ot Y

or

13



hir) mA(m) [-vx + wt = vzcosy + ajm)] .
a g sin [ vx + wt = vzcosy - aﬂm)] . (26)
o (™

where 3 is the amplitude ratio of the outgoing wave to the in=

cident wave

5. Behavior of the Outgoing Waves

At this stage, it is desirable to examine the behavior of the
waves h(I) for the different modes of forced oscillation in order to
confirm the validity of the formula, Eq. {26). If we take the mode = 2,
f.e., sway, then it follows that

2) _ N (2)
Ci + 2 3 Kij

j=1
@) _ -, (2)
D, =2 j§| KiQyr
N
2
> KjQé+}

-1] j=!
952)= tan HJ

N
2 K.ng)
j=1 J1

> ko)
= J

N+ §
GEZ)= tan™! JN
<2 K.Q.(Z)-
j:] J J

It is seen from the above expressions that efz) is related to
GSZ) by the equation €£2) + 6(2) = . Referring to Eq. (26), it is

stated that the outgoing waves hiz) and h(2 have the phase dif-

ferences © . For rall, the same relation holds, This is ascribed to

the asymmetric motion of the fluid with respect to the y-axis.

In a similar manner, we can examine the outgoing waves for mode = 3,

14



i.e., heave, and obtain the relation 3(2) + e£3) = 0 . The outgoing
waves th) and h£3) have the zero phase difference. This is of
course ascribed to the symmetric flow about the y-axis. It is apparent
that these characteristics hold also for the diffracted waves.

We observe the same characteristic behavior of the outgoing waves
derived from the radiation potential used by Grim.2* This fact assures
us that we can readily estimate the wave-exciting forces and moments on
a fixed ship in oblique seas by applying the above results in the light

of Haskind-Newman theory.12

6. The Lateral Drifting Force and Moment

The scattered waves caused by the presence of the floating strip
section in the strip domain are the vectorial sum of the outgoing waves
Eq. (26) due to diffraction and radiation, Since

I

(m}) e (m)
hnm i Re{ g'A(m) e-l[ e_m t oyt vzcosy | ei(vX+wt) }

a

the complex outgoing wave at x — - is

 {m)
-a =££m) ei(vx-l-u,)t) (27)
with
er e (M)
ﬂgm) Ly A(m) e-n[eEm + %-+ vzcosy, ] (28)

Efm) is designated as the complex amplitude ratio. The vector sum of
the amplitude ratio i(m) Is given in the form
Ao=[n A [ 5 A (29)
2.3 diffracted " 23%  diated

When the body is fixed, the second term on the right-hand side vanishes

and the mode m=4 does not contribute to the scatter.
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According to Maruo,® the lateral drifting force on the strip body

is represented In the form

dK = %‘p g a® 1A_I? dz

(30)

Thus, the resultant lateral drifting force and moment about the center

of gravity are

K-%p g a? J'EE 1A_I? dz
%

M= -;- p g a J'La A_122dz
e

or in dimenslonless form

K =1 2
-I———;-E L‘I‘ IA 12 dz
7 P98 ={y
M

where
L = ship length

16

(31)

(32)
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DISCUSSION

In order to confirm the applicability of the theoretical procedure
for the prediction of the drifting forces and moments, we chose the two
important experimental results by Lalangas® and Ogawa.’ Lalangas® gives
extensive measured data of the lateral forces and moments on the fixed
model in oblique seas and additionally the lateral forces on the "free
model”jin beam seas which is the most valuable data for our comparison.
Ogawa” gives the experimentally measured values of the lateral forces and
moments on a fixed model In oblique seas. The lateral forces on the
fixed model measured by Lalangas appear to be negative in low frequency

range, which is not acceptable both in the physical and theoretical sense,

This is an error which is seemingly caused by the enormous diffi-
culty of instrumental techniques to measure such a small dc-component
of an oscillating force, especially in low frequency ranges. In order
to clear up this suspicious matter, we first compared our prediction with
~Ogawa's results and it was seen that the agreement between the prediction
and experiments were excellent. Since the lateral forces on a free body
oscillating in oblique waves are of primary interest in this study, we
present the model particulars tested by Lalangas and the damping char-
acteristics of the model in tabulated forms (see Table | and 11). The
mode] was fitted with rudder, but in the calculations it was assumed

that the rudder was not present.

The natural period, as well as the damping characters in Table ||,
are utilized in solving the coupled-swaying-rolling-yawing motions accord-
ing to the procedure described in Ref. 3. The computation of the drifting
forces and moments of the model were carried out for the range of wave-ship
length ratio 3/L = 0.2 - L6, and for the headings 1 = 30°, 60°, 90°, 120°
and ISOo for both fixed and free models. The calculated results are
illustrated in Figures 3 to 9, First of all, we are interested in Fig., S

which shows the experimental results of the lateral forces on both fixed

*see Ref. 8, page B
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and free models in beam seas. Referring to this figure, we see that

first the agreement between measured and predicted values for the free
body is excellent in the Important high frequency range, while the dis-
crepancy s quite large In the low frequency range. As once mentioned

in the beginning of this section, the measurements by Lalangas may not be
quite accurate, We observe also that the discrepancy is quite large be-
tween the measured and predicted forces on the fixed body. However, the
accuracy of the present calculations is confirmed by comparison with

the recent experimental results by Ogawa In the Delft Shipbutiding Labora-

tory.”

Secondly, in Fig., 5, the forces in the very high frequency range
are fluctuating significantly. This fluctuation might be ascribed to the
numerical procedure and could be avolded with a different computational

scheme. However, the effort on this problem was abandoned in this study.

Thirdly, the drifting forces on the free body are generally less
than the forces on the fixed body in both experiments and theory.

With respect to Figures 3, 4, 6 and 7, the discussions are similar
to the above. In referring to Fig. 8, we see that the predicted lateral
peak forces on the fixed body always occur In beam seas, while the
maximum forces on the free body occur not in beam seas but in quartering
seas. The lateral moments about the vertical axis through the center of
gravity are illustrated in Fig. 9. The maximum amplltude of the moments

both on the fixed and free models occur in beam and quartering seas.

18



CONCLUS | ONS

From the preceding comparison and discussion, the following con-

clusions are obtained.

. The lateral drifting forces are significant In high

frequencies, while negligible In low frequencies.

2. The maximum lateral forces on the fixed body occur in
beam seas only, while the maximum lateral forces on the
free body occur in quartering seas. As the frequency
is reduced, both of these maxima are reduced and become

less pronounced.

3. The lateral forces on the free body are generally less
than those on the fixed body.

ki, The lateral forces predicted and measured are generally

in good agreement.
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TABLE )
MODEL PART ICULARS

LBP (L) 5.00 Ft
Breadth (B) 0.667 ft
Draft (level trim) (1) 0.267 ft
Displacement (FW) (a) 33.27 1b
LCG (abaft midsection) 0.075 ft
VCG (below water 1ine) (06) 0.022 ft
Rudder area 0.030 ft2
Water-plane area (A) 2,355 ft°
Load water-line coefficient (C ) 0.T06
Pitch gyradlus (nﬁ) 1.275 ft
Yaw gyradlus (ny) 1.275 ft
Roll metacentric height (Eﬂq) 0.025 ft

TABLE 1|

ROLL ING NATURAL PERIOD AND DAMPING COEFFICIENT

TCP {sec) 1.75
&y 0.0733
6o (1/deg) 0.139
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APPENDIX

Referring to Eqs. (22) and (23) and Reference 10, we consider the

integral

[ G ds=xRe [ i e~ T2-0) 4 (A-1)
S 5

By denoting the angle of the jth segment with the positive x-axis
by oy we write the differential arc (see Fig. 2b),

fa, .
ds = e dg

and

I | em1E eivz ds = i e 12 e'oj I ei\’}-i d¢

S 5.
J J .
-tuwz i - E:j+l §+1
LT gy T
gj’ 'nj
and thus we obtain
~1\2 i{ve, ) V. §(ve+a,)
J's Gr:!: ds = :&:Re{% [evﬂjﬂ e EJ'H % e de gj % ]} (A-2)

]

Next, we consider the integral,

I G, ds = & Re I i e'i\(z't) ds
5] 5
I ¥,

where T = - (g + 11) and dT = - dse J.
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In a similar way we obtain the result,

~ivz VT -i(vE, Fe ) VT, =T VE.+a, )
js Grids=d:Re{-% [e I*1e TRl R RO PR J ]}

-J (A-3)

The rest of the component integrals are also calculated in the similar

manner to the above and they are given in the form,

-ivz oy H(ve +a)) 1{ve +o,)
Re{'?'v—l_ [ewﬂ“‘e'(v‘ﬁl ARG R M 3} (A-1)

J‘s Gl:i:ds =
J
-1 Moy ~1( +or) VT
J'-S Gi ds = Re{iev \)Z[e\) j+|e ! v€j+] aj -e\) je—i(u§j+aj)]} (A_s)
-J

Inserting the component integrals in £q. (23) and rearranging, we obtain:

|, =2 {[1+(-|)'“]KJ. cos w + [1-(-1)™] Lysin w je™

ri
(A-6)
hia=- {[-(-I)m]Lj cos w + [I+(—I)w] stin vxle¥
where,
V. v,
K = % [e J+lcos(v§j+]+aj) e 7 cos(ve;+a;)]
. 'ﬂ (A-T)
Vi), V.
LJ =J [e J+!sin(v§j+]+oﬂj) -e sin(v§j+aj)]
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FIGURE 2a
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